So-net無料ブログ作成
検索選択

torch7で小さくディープラーニング(4)複数データからある数値をピックアップ [人工知能(ディープラーニング)]

今回は、5つの数のうちから-1になっているものを見つけるようにします。

==================================ここから

require 'nn'

dataset={}

function dataset:size() return 200 end
-- データセットを200個作ります
for i=1,dataset:size() do
input=torch.Tensor(5)
input[1]=torch.random(1,10)
input[2]=torch.random(1,10)
input[3]=torch.random(1,10)
input[4]=torch.random(1,10)
input[5]=torch.random(1,10)
-- 乱数でどこかを-1にして、同じ位置の出力は1にします。他は0
x=torch.random(1,5)
input[x]=-1
output=torch.Tensor(5):zero()
output[x]=1

dataset[i]={input,output}
end
-- 人工知能モデルの設定
model=nn.Sequential();
model:add(nn.Linear(5,6))
model:add(nn.Tanh())
model:add(nn.Linear(6,5))
model:add(nn.Tanh())


-- 学習用パラメーターの設定
criterion = nn.MSECriterion()
trainer=nn.StochasticGradient(model,criterion)
trainer.learningRate=0.01
trainer.maxIteration=100
trainer:train(dataset)

-- 学習済みデータをセーブしておきます。(今回はなくてもかまいません)
torch.save('TEST.t7',model)

-- 学習結果の確認
a=torch.Tensor(5)
for i=1,10 do
a[1]=torch.random(1,10)
a[2]=torch.random(1,10)
a[3]=torch.random(1,10)
a[4]=torch.random(1,10)
a[5]=torch.random(1,10)
x=torch.random(1,5)
a[x]=-1

b=model:forward(a)
-- 見やすいように、出力結局を十倍にして小数点以下きりすてます
b=torch.round(b*10)
print("INPUT :"..a[1]..","..a[2]..","..a[3]..","..a[4]..","..a[5])
print("ANSWER:"..b[1]..","..b[2]..","..b[3]..","..b[4]..","..b[5])
print("------")

end
==============================================
これで実行すると、ちゃんと-1の値と同じ位置の出力結局が9(限りなく10に近いのですが、小数点以下切り捨てのため9になってます)

STEST4.png

ちなみに、今回は5つの入力と同じ、出力も5つにしました。
これがもっとも簡単なパターンです。

もしこれを、出力のデータを1個にして、-1が1番目だったら1、5番目だったら5、というように出力させようとすると…かなり難しくなります。
(人工知能関係を解説しているサイトや、書籍でも説明が面倒なのか、当たり前すぎる事なのか、意外と説明はありません)

それを説明しますので、次回はちょっとだけ難しくなります…


nice!(0)  コメント(0)  トラックバック(0) 
共通テーマ:学問

nice! 0

コメント 0

コメントを書く

お名前:
URL:
コメント:
画像認証:
下の画像に表示されている文字を入力してください。

※ブログオーナーが承認したコメントのみ表示されます。

トラックバック 0

この記事のトラックバックURL:
※ブログオーナーが承認したトラックバックのみ表示されます。
※言及リンクのないトラックバックは受信されません。